Conversion of Mechanical Force into TGF-β-Mediated Biochemical Signals

نویسندگان

  • Toru Maeda
  • Tomoya Sakabe
  • Ataru Sunaga
  • Keiko Sakai
  • Alexander L. Rivera
  • Douglas R. Keene
  • Takako Sasaki
  • Edward Stavnezer
  • Joseph Iannotti
  • Ronen Schweitzer
  • Dusko Ilic
  • Harihara Baskaran
  • Takao Sakai
چکیده

Mechanical forces influence homeostasis in virtually every tissue [1, 2]. Tendon, constantly exposed to variable mechanical force, is an excellent model in which to study the conversion of mechanical stimuli into a biochemical response [3-5]. Here we show in a mouse model of acute tendon injury and in vitro that physical forces regulate the release of active transforming growth factor (TGF)-β from the extracellular matrix (ECM). The quantity of active TGF-β detected in tissue exposed to various levels of tensile loading correlates directly with the extent of physical forces. At physiological levels, mechanical forces maintain, through TGF-β/Smad2/3-mediated signaling, the expression of Scleraxis (Scx), a transcription factor specific for tenocytes and their progenitors. The gradual and temporary loss of tensile loading causes reversible loss of Scx expression, whereas sudden interruption, such as in transection tendon injury, destabilizes the structural organization of the ECM and leads to excessive release of active TGF-β and massive tenocyte death, which can be prevented by the TGF-β type I receptor inhibitor SD208. Our findings demonstrate a critical role for mechanical force in adult tendon homeostasis. Furthermore, this mechanism could translate physical force into biochemical signals in a much broader variety of tissues or systems in the body.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tendon Homeostasis: The Right Pull

Mechanotransduction, the conversion of a biophysical force into a cellular response, allows cells and tissues to respond to their mechanical milieu. How muscle force is translated through TGF-β signaling to regulate tendon homeostasis offers an interesting in vivo example of mechanotransduction.

متن کامل

Mechanical perturbation of filamin A immunoglobulin repeats 20-21 reveals potential non-equilibrium mechanochemical partner binding function

The actin crosslinking protein filamin A (FLNa) mediates mechanotransduction, a conversion of mechanical forces into cellular biochemical signals to regulate cell growth and survival. To provide more quantitative insight into this process, we report results using magnetic tweezers that relate mechanical force to conformational changes of FLNa immunoglobulin-like repeats (IgFLNa) 20-21, previous...

متن کامل

Reduction of fibroblast size/mechanical force down‐regulates TGF‐β type II receptor: implications for human skin aging

The structural integrity of human skin is largely dependent on the quality of the dermal extracellular matrix (ECM), which is produced, organized, and maintained by dermal fibroblasts. Normally, fibroblasts attach to the ECM and thereby achieve stretched, elongated morphology. A prominent characteristic of dermal fibroblasts in aged skin is reduced size, with decreased elongation and a more rou...

متن کامل

Extracellular matrix as a contextual determinant of transforming growth factor-β signaling in epithelial-mesenchymal transition and in cancer

Extracellular matrix (ECM) provides both structural support and contextual information to cells within tissues and organs. The combination of biochemical and biomechanical signals from the ECM modulates responses to extracellular signals toward differentiation, proliferation, or apoptosis; alterations in the ECM are necessary for development and remodeling processes, but aberrations in the comp...

متن کامل

Transforming growth factor-beta induces skeletal muscle atrophy and fibrosis through the induction of atrogin-1 and scleraxis.

INTRODUCTION Transforming growth factor-beta (TGF-β) is a well-known regulator of fibrosis and inflammation in many tissues. During embryonic development, TGF-β signaling induces expression of the transcription factor scleraxis, which promotes fibroblast proliferation and collagen synthesis in tendons. In skeletal muscle, TGF-β has been shown to induce atrophy and fibrosis, but the effect of TG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011